LaTeX Reference for Probability

Shortcuts

These are commands you would define in the preamble.

\documentclass{article}
\usepackage{amsmath}

% COMMANDS GO HERE

\begin{document}

Absolute Value

\newcommand{\abs}[1]{\lvert #1 \rvert}
\newcommand{\bigabs}[1]{\Bigl \lvert #1 \Bigr \rvert}
  • \abs{x} becomes \(\lvert x \rvert\)
  • \bigabs{\frac{x}{2}} becomes \(\Bigl \lvert \frac{x}{2} \Bigr \rvert\)

Bigger Brackets

\newcommand{\bigbracket}[1]{\Bigl [ #1 \Bigr ]}
  • \bigbracket{\frac{1}{2} x^2}_{x=0}^{x=1} becomes \({\Bigl [ \frac{1}{2} x^2 \Bigr ]}_{x=0}^{x=1}\)

Bigger Parentheses

\newcommand{\bigparen}[1]{\Bigl ( #1 \Bigr )}
  • \bigparen{1 + \frac{1}{n}}^n becomes \({\Bigl ( 1 + \frac{1}{n} \Bigr )}^n\)

Ceiling and Floor

\newcommand{\ceil}[1]{\lceil #1 \rceil}
\newcommand{\bigceil}[1]{\Bigl \lceil #1 \Bigr \rceil}
\newcommand{\floor}[1]{\lfloor #1 \rfloor}
\newcommand{\bigfloor}[1]{\Bigl \lfloor #1 \Bigr \rfloor}
  • \ceil{\log_2 n} becomes \(\lceil \log_2 n \rceil\)
  • \bigfloor{\frac{n}{2}} becomes \(\Bigl \lfloor \frac{n}{2} \Bigr \rfloor\)

Norms

\newcommand{\norm}[1]{\| #1 \|}
\newcommand{\bignorm}[1]{\Bigl \| #1 \Bigr \| #1}
  • \norm{x}_2^2 becomes \({\| x \|}_2^2\)
  • \bignorm{(X^T X)^{-1} X^T y} becomes \({\Bigl \| (X^T X)^{-1} X^T y \Bigr \|}_2^2\)

Inner Product

\newcommand{\inner}[1]{\langle #1 \rangle}
  • \inner{u, v} becomes \(\langle u, v \rangle\)

Sets

\newcommand{\set}[1]{\{ #1 \}}
  • \set{0, 1}^n becomes \(\{ 0, 1 \}^n\)

Style Files

To avoid defining these commands in the preamble of every document, you can make .sty file that contains these commands. For example, add this file eecs.sty to an Overleaf project and then add the following command in the preamble.

\documentclass[11pt]{article}
\usepackage[margin=1in]{geometry}

\usepackage{eecs}

\begin{document}

If you don’t use Overleaf, just make sure eecs.sty is in the same directory as your .tex file. You can also have it in a parent folder, and reference it like this

\usepackage{../eecs}

Sets / Probability

Intersection / Union

$P(A \cap B)$

becomes \(P(A \cap B)\)

$P(\cup_{i=1}^n A_i)$

becomes \(P(\cup_{i=1}^n A_i)\)

Complement

  • \overline or \complement
  • $P(\overline{A})$ becomes \(P(\overline{A})\)
  • $P(A^\complement)$ becomes \(P(A^\complement)\)

Set Subtraction

$A^\complement = \Omega \setminus A$

becomes \(A^\complement = \Omega \setminus A\)

Subset

$A \subset B$ or $A \subseteq B$

becomes \(A \subset B\) or \(A \subseteq B\).

Conditional Probability

$P(A \mid B)$

becomes \(P(A \mid B)\)

Symbols in Distributions

Sim

The squiggly \sim i.e. \(\sim\)

X_i \stackrel{iid}{\sim} U[0, 1]

becomes \(X_i \stackrel{iid}{\sim} U[0, 1]\)

Choose / nCr

  • Like found in binomial distribution formula
  • binom{n}{k} becomes \(\binom{n}{k}\)
P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}

becomes \(P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}\)

Fancy Expectation

  • \mathbb{E}
  • Need the amssymb package.
$E[X]$ vs. $\mathbb{E}[X]$
  • becomes \(E[X]\) vs \(\mathbb{E}[X]\).
  • Use shortcut if you go with it
\newcommand{\E}{\mathbb{E}}

\mathbb is also used for things like

  • Real Numbers: \mathbb{R}^n becomes \(\mathbb{R}^n\)
  • Integers: \mathbb{Z}^+ becomes \(\mathbb{Z}^+\)

Fancy Normal

  • \mathcal{N}
  • Needs the ‘amssymb’ package.
$X \sim N(0,1)$ vs. $X \sim \mathcal{N}(0, 1)$
  • becomes \(X \sim N(0,1)\) vs. \(X \sim \mathcal{N}(0,1)\)
  • Use shortcut if you go with it
\newcommand{\N}{\mathcal{N}}

\mathcal is also used for things like

  • The set of values an RV can take i.e. \mathcal{X} or \(\mathcal{X}\)

    E[X] = \sum_{x \in \mathcal{X}} x \cdot P(X = x)
    

    becomes \(E[X] = \sum_{x \in \mathcal{X}} x \cdot P(X = x)\).

w.p.

\begin{equation}
  X =
  \begin{cases}
    1 & \text{w.p. $p$} \\
    0 & \text{w.p. $1-p$}
  \end{cases}
\end{equation}
  • becomes \(\begin{equation} X = \begin{cases} 1 & \text{w.p. $p$} \\ 0 & \text{w.p. $1-p$} \end{cases} \end{equation}\)
  • & symbols are used to separate columns, \\ are used to make new lines